Accurate Simulation of Circular and Elliptic Cylindrical Invisibility Cloaks

Author:

Yang Zhiguo,Wang Li-Lian

Abstract

AbstractThe coordinate transformation offers a remarkable way to design cloaks that can steer electromagnetic fields so as to prevent waves from penetrating into thecloaked region(denoted by Ω0, where the objects inside are invisible to observers outside). The ideal circular and elliptic cylindrical cloaked regions are blown up from a point and a line segment, respectively so the transformed material parameters and the corresponding coefficients of the resulted equations are highly singular at the cloaking boundary ∂Ω0. The electric field or magnetic field is not continuous across ∂Ω0. The imposition of appropriatecloaking boundary conditions(CBCs) to achieve perfect concealment is a crucial but challenging issue.Based upon the principle that a well-behaved electromagnetic field in the original space must be well-behaved in the transformed space as well, we obtain CBCs that intrinsically relate to the essential “pole” conditions of a singular transformation. We also find that for the elliptic cylindrical cloak, the CBCs should be imposed differently for the cosine-elliptic and sine-elliptic components of the decomposed fields. With these at our disposal, we can rigorously show that the governing equation in Ω0can be decoupled from the exterior region, and the total fields in the cloaked region vanish under mild conditions. We emphasize that our proposal of CBCs is different from any existing ones.Using the exact circular (resp., elliptic) Dirichlet-to-Neumann (DtN) non-reflecting boundary conditions to reduce the unbounded domainto a bounded domain, we introduce an accurate and efficient Fourier-Legendre spectral-element method (FLSEM) (resp., Mathieu-Legendre spectral-element method (MLSEM)) to simulate the circular cylindrical cloak (resp., elliptic cylindrical cloak). We provide ample numerical results to demonstrate that the perfect concealment of waves can be achieved for the ideal circular/elliptic cylindrical cloaks under our proposed CBCs and accurate numerical solvers.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Reference67 articles.

1. Acoustic and Electromagnetic Equations

2. Enhanced approximate cloaking by SH and FSH lining;Li;Inverse Problems,5011

3. Geometry and Light: The Science of Invisibility;Leonhardt;Dover Publications,2012

4. Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3