Numerical Modeling of Material Points Evolution in a System with Gravity

Author:

Melkikh A. V.,Melkikh E. A.,Kozhevnikov V. A.

Abstract

AbstractThe evolution of material points interacting via gravitational force in 3D space was investigated. At initial moment points with masses of 2.48 Sun masses are randomly distributed inside a cube with an edge of 5 light-years. The modeling was conducted at different initial distributions of velocities and different ratios between potential and kinetic energy of the points. As a result of modeling the time dependence of velocity distribution function of points was obtained. Dependence of particles fraction which had evaporated frominitial cluster on time for different initial conditions is obtained. In particular, it was obtained that the fraction of evaporated particles varies between 0,45 and 0,63.Mutual diffusion of two classes of particles at different initial conditions in the case when at initial moment of time both classes of particles occupy equal parts of cube was investigated.The maximum Lyapunov exponent of the system with different initial conditions was calculated. The obtained value weakly depends on the ratio between initial kinetic and potential energies and amounts approximately 10–5. Corresponding time of the particle trajectories divergence turned out to be 40-50 thousand years.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Reference20 articles.

1. ORBITS OF NEAR-EARTH ASTEROID TRIPLES 2001 SN263 AND 1994 CC: PROPERTIES, ORIGIN, AND EVOLUTION

2. Poincaré, celestial mechanics, dynamical-systems theory and “chaos”

3. Zausaev A.F. , Zausaev A.A. , Abramov V.V. , Denisov S.S. , Database Development for Solar System Small Bodies’ Orbital Evolution Based on Modern Mathematical Models and Methods, Proceedings of the International Conference “Asteroid-Comet Hazard-2009”, Saint Petersburg “Nauka”, (2010) 102-106.

4. Hamiltonian intermittency and Lévy flights in the three-body problem;Shevchenko;Physical Review,2010

5. Onset of secular chaos in planetary systems: period doubling and strange attractors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can we use thermodynamics in the systems with gravity?;Modern Physics Letters B;2017-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3