A Tailored Finite Point Method for Solving Steady MHD Duct Flow Problems with Boundary Layers

Author:

Hsieh Po-Wen,Shih Yintzer,Yang Suh-Yuh

Abstract

AbstractIn this paper we propose a development of the finite difference method, called the tailored finite point method, for solving steady magnetohydrodynamic (MHD) duct flow problems with a high Hartmann number. When the Hartmann number is large, the MHD duct flow is convection-dominated and thus its solution may exhibit localized phenomena such as the boundary layer. Most conventional numerical methods can not efficiently solve the layer problem because they are lacking in either stability or accuracy. However, the proposed tailored finite point method is capable of resolving high gradients near the layer regions without refining the mesh. Firstly, we devise the tailored finite point method for the scalar inhomogeneous convection-diffusion problem, and then extend it to the MHD duct flow which consists of a coupled system of convection-diffusion equations. For each interior grid point of a given rectangular mesh, we construct a finite-point difference operator at that point with some nearby grid points, where the coefficients of the difference operator are tailored to some particular properties of the problem. Numerical examples are provided to show the high performance of the proposed method.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3