Using Discrete and Continuous Models to Solve Nanoporous Flow Optimization Problems

Author:

Boggs Paul T.,Gay David M.,Nash Stephen G.

Abstract

AbstractWe consider using a discrete network model in combination with continuous nonlinear optimization models to solve the problem of optimizing channels in nanoporous materials. The problem and the hierarchical optimization algorithm are described in [2]. A key feature of the model is the fact that we use the edges of the finite element grid as the locations of the channels. The focus here is on the use of the discrete model within that algorithm. We develop several approximations to the relevant flow and a greedy algorithm for quickly generating a “good” tree connecting all of the nodes in the finite-element mesh to a designated root node. We also consider Metropolis-Hastings (MH) improvements to the greedy result. We consider both a regular triangulation and a Delaunay triangulation of the region, and present some numerical results.

Publisher

Global Science Press

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Modelling and Simulation

Reference16 articles.

1. Topology of the Fittest Transportation Network

2. Truncated newton-based multigrid algorithm for centroidal Voronoi diagram calculation;Di;Numerical Mathematics: Theory, Methods and Applications,2012

3. Properties of a class of multilevel optimization algorithms for equality-constrained problems

4. Multigrid Optimization Schemes for Solving Bose–Einstein Condensate Control Problems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3