A New Quasi-Monte Carlo Technique Based on Nonnegative Least Squares and Approximate Fekete Points

Author:

Bittante Claudia,De Marchi Stefano,Elefante Giacomo

Abstract

AbstractThe computation of integrals in higher dimensions and on general domains, when no explicit cubature rules are known, can be ”easily” addressed by means of the quasi-Monte Carlo method. The method, simple in its formulation, becomes computationally inefficient when the space dimension is growing and the integration domain is particularly complex. In this paper we present two new approaches to the quasi-Monte Carlo method for cubature based onnonnegative least squaresandapproximate Fekete points. The main idea is to use less points and especiallygood pointsfor solving the system of the moments.Good pointsare here intended as points with good interpolation properties, due to the strict connection between interpolation and cubature. Numerical experiments show that, in average, just a tenth of the points should be used mantaining the same approximation order of the quasi-Monte Carlo method. The method has been satisfactory applied to 2 and 3-dimensional problems on quite complex domains.

Publisher

Global Science Press

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Modeling and Simulation

Reference34 articles.

1. Owen A. B. , Multidimensional variation for quasi-Monte Carlo, http://finmath.stanford.edu/~owen/reports/ktfang.pdf.

2. Analytic transformations of admissible meshes;Piazzon;East J. Approx.,2010

3. Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder;De Marchi;Appl. Math. Comput.,2012

4. Quasi-Monte Carlo methods and pseudo-random numbers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast empirical scenarios;Journal of Computational Mathematics and Data Science;2024-09

2. Tchakaloff-like compression of QMC volume and surface integration on the union of balls;Calcolo;2024-07-12

3. Monte Carlo cubature construction;Japan Journal of Industrial and Applied Mathematics;2020-12-15

4. Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points;Applied Numerical Mathematics;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3