Abstract
AbstractQuantum Monte Carlo data are often afflicted with distributions that resemble lognormal probability distributions and consequently their statistical analysis cannot be based on simple Gaussian assumptions. To this extent a method is introduced to estimate these distributions and thus give better estimates to errors associated with them. This method entails reconstructing the probability distribution of a set of data, with given mean and variance, that has been assumed to be lognormal prior to undergoing a blocking or renormalization transformation. In doing so, we perform a numerical evaluation of the renormalized sum of lognormal random variables. This technique is applied to a simple quantum model utilizing the single-thread Monte Carlo algorithm to estimate the ground state energy or dominant eigenvalue of a Hamiltonian matrix.
Subject
Physics and Astronomy (miscellaneous)