Simulation of Inviscid Compressible Flows Using PDE Transform

Author:

Hu Langhua,Yang Siyang,Wei Guo-Wei

Abstract

AbstractThe solution of systems of hyperbolic conservation laws remains an interesting and challenging task due to the diversity of physical origins and complexity of the physical situations. The present work introduces the use of the partial differential equation (PDE) transform, paired with the Fourier pseudospectral method (FPM), as a new approach for hyperbolic conservation law problems. The PDE transform, based on the scheme of adaptive high order evolution PDEs, has recently been applied to decompose signals, images, surfaces and data to various target functional mode functions such as trend, edge, texture, feature, trait, noise, etc. Like wavelet transform, the PDE transform has controllable time-frequency localization and perfect reconstruction. A fast PDE transform implemented by the fast Fourier Transform (FFT) is introduced to avoid stability constraint of integrating high order PDEs. The parameters of the PDE transform are adaptively computed to optimize the weighted total variation during the time integration of conservation law equations. A variety of standard benchmark problems of hyperbolic conservation laws is employed to systematically validate the performance of the present PDE transform based FPM. The impact of two PDE transform parameters, i.e., the highest order and the propagation time, is carefully studied to deliver the best effect of suppressing Gibbs’ oscillations. The PDE orders of 2-6 are used for hyperbolic conservation laws of low oscillatory solutions, while the PDE orders of 8-12 are often required for problems involving highly oscillatory solutions, such as shock-entropy wave interactions. The present results are compared with those in the literature. It is found that the present approach not only works well for problems that favor low order shock capturing schemes, but also exhibits superb behavior for problems that require the use of high order shock capturing methods.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3