Quadratic shrinkage for large covariance matrices
Author:
Affiliation:
1. Department of Economics, University of Zurich, 8032 Zurich, Switzerland
Publisher
Bernoulli Society for Mathematical Statistics and Probability
Subject
Statistics and Probability
Reference69 articles.
1. Abrahamsson, R., Selen, Y. and Stoica, P. (2007). Enhanced covariance matrix estimators in adaptive beamforming. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP 2007 II 969–972.
2. Bai, Z.D. and Silverstein, J.W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 316–345. 10.1214/aop/1022855421
3. Bickel, P.J. and Levina, E. (2008a). Covariance regularization by thresholding. Ann. Statist. 36 2577–2604. 10.1214/08-AOS600
4. Bickel, P.J. and Levina, E. (2008b). Regularized estimation of large covariance matrices. Ann. Statist. 36 199–227. 10.1214/009053607000000758
5. Bodnar, T., Gupta, A.K. and Parolya, N. (2016). Direct shrinkage estimation of large dimensional precision matrix. J. Multivariate Anal. 146 223–236. 10.1016/j.jmva.2015.09.010
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. High dimensional discriminant rules with shrinkage estimators of the covariance matrix and mean vector;Journal of Statistical Planning and Inference;2025-01
2. Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization;European Journal of Operational Research;2024-10
3. Exponential bounds for regularized Hotelling’s T2 statistic in high dimension;Journal of Multivariate Analysis;2024-09
4. Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS;Quantitative Finance;2024-07-16
5. Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns;Journal of Empirical Finance;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3