DEVELOPMENT OF METHODS AND MANAGEMENT TOOLS AEROGASDYNAMICS PROCESSES AT MINING SITES

Author:

BOSIKOV Igor, ,KLYUEV Roman,KHETAGUROV Valery,AZHMUKHAMEDOV Iskandar, , ,

Abstract

The practical development of the algorithm for optimal control of mine ventilation was preceded by comprehensive studies of the specific features of mining sites in order to obtain their mathematical description. The latter includes the static and dynamic characteristics of objects, i.e. the relationship between input and output values. The purpose of the research: to develop methods and management tools aerogasdynamics processes on mining sites of coalmines. Research methods. The methodology based on the system approach; modern methods of mathematical statistics, decision theory; mathematical logic devices; factor analysis; mathematical modeling; set theory and system analysis. To determine the dynamic characteristics of aerogasodynamic processes, experimental methods were used, divided into active and passive. The active method consists in con-structing a dynamic model of airing objects by approximating the transition curve obtained because of special effects on the airing object with an analytical expression. Statistical dynamics methods were used to obtain dynamic characteristics based on normal operation data. The method of correlation analysis was used. Results of research: experimental verification showed that the maximum relative error of in determining the methane concentration from the static characteristic constructed using a modified technique does not exceed 10 %. The value of the error was determined by comparing the static characteristic obtained by the modified correlation analysis method with the exact static characteristic of the airing object. The latter were found with regard to dynamic properties of the object and additive structures aerogas dynamics processes. Conclusion. The method of correlation analysis can be used to determine the dependence of the methane flow rate on the airflow rate in the steady-state mode, i.e. the static characteristic q = f (Q) for the site and lava. To determine the static characteristics based on the data of normal operation with a limited observation interval (5-10 days), a modified method of correlation analysis is proposed. Small values of the relative error of indicate the possibility and feasibility of using a modified correlation analysis technique to construct a static characteristic of the airing object based on random processes of methane concentration and air flow obtained during normal operation of the site. The static characteristics C= f (Q) and q= f(Q) are widely used to determine the mathematical expectations of the methane concentration and flow rate of mining sites, in the modeling of ventilation facilities and in the analysis and synthesis of mine ventilation control systems.

Publisher

FSBEIHE North Caucasian Institute of Mining and Metallurgy (STU)

Subject

Management, Monitoring, Policy and Law,Earth and Planetary Sciences (miscellaneous),Mechanical Engineering,Sociology and Political Science,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3