Transient Expression of a Recombinant Monoclonal Antibody in HEK293T Cells

Author:

Mohammadian Omid1,Rajabibazl Masoumeh1,Bayat Hadi23,Rahimpour Azam23

Affiliation:

1. Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2. Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

Background: Monoclonal antibodies (mAbs) are considered the most important and financially successful category of the biopharmaceuticals. Extensive optimization of the expression vector, host system and culture parameters are required for the successful production of active monoclonal antibodies in mammalian cells. In this regards, transient expression enables rapid and cost-effective production of recombinant proteins for initial characterization. Methods: In the present study, an internal ribosome entry site (IRES) based bicistronic expression system has been evaluated for the transient expression of an anti-CD52 monoclonal antibody in mammalian cells. The IRES based bicistronic vector was generated through sequential cloning of the Light chain (LC), IRES, and Heavy chain (HC) in an intermediate vector and transfer of the resulting fragment to the expression vector. Transfection of the HEK293T cells was performed and antibody expression was analyzed in cell culture supernatant. Results: Restriction enzyme analysis indicated successful cloning of the antibody coding unit in the expression vector. Analysis of EGFP expression indicated successful transfection of the HEK293T cells. Production levels of 220 µg/L of antibody were achieved in HEK293T cells during three days of culture. Conclusion: Our results show the convenience and efficiency of the bicistronic expression system for transient expression of the whole monoclonal antibodies in mammalian cells.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3