The Efficacy of Photodynamic Inactivation of the Diode Laser in Inactivation of the Candida albicans Biofilms With Exogenous Photosensitizer of Papaya Leaf Chlorophyll

Author:

Astuty Sri Dewi12,Suhariningsih 3,Baktir Afaf4,Astuti Suryani Dyah3

Affiliation:

1. Doctoral Program of Mathematics and Natural Science, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

2. Department of Physics of Hasanuddin University, Makassar, Indonesia

3. Department of Physics Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

4. Department of Chemistry Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

Abstract

Introduction: Photodynamic inactivation has been developed to kill pathogenic microbes. In addition, some techniques have been introduced to minimize the biofilm resistance to antifungal properties in inhibiting cell growth. The principle of photodynamic inactivation different to antifungal drugs therapy which is resistant to biofilms. The presence of reactive oxygen species (ROS) that generating in photodynamic inactivation mechanisms can be damaging of biofilm cells and the principle of light transmission that could be penetrating in matrix layers of extracellular polymeric substance (EPS) until reaching the target cells at the base layers of biofilm. The present work aims to explore the potential of chlorophyll extract of papaya leaf as an exogenous photosensitizer to kill the Candida albicans biofilms after being activated by the laser. The potential of chlorophyll photosensitizer was evaluated based on the efficacy of inactivation C. albicans biofilm cell through a cell viability test and an organic compound test. Methods: The treatment of photoinactivation was administered to 12 groups of C. albicans biofilm for four days using the 445 nm laser and the 650 nm laser. The 445 nm and 650 nm lasers activated the chlorophyll extract of the papaya leaf (0.5 mg/L) at the same energy density. The energy density variation was determined as 5, 10, 20, 30 and 40 J/cm2 with the duration of exposure of each laser adjusted to the absorbance percentage of chlorophyll extract of the papaya leaf. Results: The absorbance percentage of chlorophyll extracts of the papaya leaf on wavelengths of 650 nm and 445 nm respectively were 22.26% and 60.29%, respectively. The most effective treated group was a group of the laser with the addition of chlorophyll, done by the 650 nm lasers with inactivation about 32% (P=0.001), while the 445 nm lasers only 25% (P=0.061). The maximum malondialdehyde levels by treatment of the laser 650 nm were (0.046±0.004) nmol/mg. Conclusion: The use of chlorophyll extract of the papaya leaf as a photosensitizer, resulted in the maximum spectrum of absorption at 414 nm and 668 nm, which produced a maximum reduction effect after photoinactivation up to 32% (with chlorophyll) and 25% (without chlorophyll). The utilization of chlorophyll extract of the papaya leaf would increase the antifungal effects with the activation by the diode laser in the biofilm of C. albicans

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

Reference31 articles.

1. Candida albicanspathogenicity mechanisms

2. Pathogenesis and treatment of oral candidosis

3. Pathogenesis ofCandida albicansbiofilm

4. Novel Materials for Eradication of Biofilm Extracell Matrix of Pathogenic Candida;Baktir A;J Mater Sci Eng B,2012

5. Genetic control of Candida albicans biofilm development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3