Magnetic nano-biocomposite CuFe2 O4 @methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution

Author:

Nasiri Alireza12ORCID,Tamaddon Fatemeh3ORCID,Mosslemin Mohammad Hossein1ORCID,Amiri Gharaghani Majid4ORCID,Asadipour Ali2ORCID

Affiliation:

1. Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran

2. Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran

3. Department of Chemistry, Yazd University, Yazd 89195-741, Iran

4. Department of Environmental Health Engineering, Sirjan Faculty of Medical Science, Sirjan, Iran

Abstract

Background: Antibiotics such as ciprofloxacin (CIP) are even more important in bacterial resistance, even at low concentrations. The aim of this research was to synthesize CuFe2 O4 @methylcellulose (MC) as a new nano-photocatalyst for degradation of CIP from aqueous solution. Methods: The nano-photocatalyst (CuFe2 O4 @MC) was characterized by FESEM, energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Powder XRD and EDS analysis confirmed the formation of pure-phase spinel ferrites. After CuFe2 O4 @MC characterization, the effective parameters in removal efficiency of CIP such as reaction time, initial antibiotic concentration, pH, photocatalyst loading, and degradation kinetic were investigated and conditions were optimized. Then, CIP degradation experiments were conducted on the real sample in the optimal conditions. The removal of chemical oxygen demand (COD) was determined under optimum conditions. Results: The structural characterization of the magnetic nanobiocomposite showed that it is in nanoscale, ferromagnetic property, and thermal stability. The optimal conditions were obtained at pH = 7, irradiation time (90 minutes), photocatalyst loading (0.2 g), and initial concentration of CIP (3 mg/L). The removal efficiency of CIP in the optimal conditions was obtained as 80.74% and 72.87% from the synthetic and real samples, respectively. The removal of COD was obtained as 68.26% in this process. The evaluation of kinetic linear models showed that the photocatalytic degradation process was fitted by pseudo-first order kinetic model and Langmuir-Hinshelwood. CuFe2 O4 @MC photocatalyst had a good stability and reusability for the fourth runs. Conclusion: The photocatalytic degradation of CIP from aqueous media with CuFe2 O4 @MC photocatalyst has a high efficiency, which can be used in the treatment of pharmaceutical wastewaters.

Publisher

Maad Rayan Publishing Company

Subject

Chemical Health and Safety,Public Health, Environmental and Occupational Health,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3