Comparison ability of algae and nanoparticles on nitrate and phosphate removal from aquaculture wastewater

Author:

Askari Hesni Majid12ORCID,Hedayati Seyed Aliakbar3,Qadermarzi Amir3ORCID,Pouladi Mojtaba3ORCID,Zangiabadi Somayeh4ORCID,Naqshbandi Nabat5ORCID

Affiliation:

1. Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran

2. Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

3. Department of Aquatic Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4. Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

5. Department of Biology, Faculty of Sciences, Payame Noor University, Oshnavieh, West Azarbaijan, Iran

Abstract

Background: Aquaculture wastewater contains high levels of phosphate and nitrate. The reuse of this water requires standards beyond the secondary standards to eliminate more organic pollutants from aquaculture effluents. In this research, the removal of these pollutants from wastewater using Chlorella vulgaris and Fe3 O4 nanoparticles in the reactor space was investigated. Methods: This study was conducted on fish farms effluent in the laboratory system. For this purpose, a 5-L semi-industrial reactor with a mixer blade, porous plate, and a compressor was designed. Chlorella vulgaris samples were collected from the natural environment and cultured in the laboratory environment. Also, Fe3 O4 nanoparticles were prepared from Iranian Nano Pishgaman Company to make the desired solution. During the experiment (3 weeks), samples were taken weekly (in one phase) from the effluent. Dissolved oxygen (DO), pH, nitrate (NO3 ), and phosphate (PO4 ) factors from the influent and effluent of the farms were measured. The statistical data were analyzed using SPSS version 21 and Excel 2013. Results: The amounts of nitrate and phosphate were decreased by about 80.76 and 80.55% in the biological reactor, whereas these amounts were 70.52 and 70.48% in the nanoparticle reactor, respectively. Also, there were significant differences in the amounts of NO3 and PO4 between the control treatment and weekly treatment (P<0.05). Conclusion: Based on the results, both reactors were able to reduce nitrate and phosphate from aquaculture wastewater, but the efficiency of the biological reactor was higher than that of the nanoparticle reactor.

Publisher

Maad Rayan Publishing Company

Subject

Chemical Health and Safety,Public Health, Environmental and Occupational Health,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3