PROPOSAL OF A SOLUTION FOR WATER DESALINIZATION USING SOLAR ENERGY

Author:

Rabai Mohamad1ORCID,Nääs Irenilza de Alencar2ORCID

Affiliation:

1. Al-Hussein Ben Tala University, Jordania

2. Universidade Paulista. São Paulo, SP, Brasil

Abstract

Water is abundant on Earth, only about 2.5% is freshwater, and because most of that water is stored as glaciers or deep groundwater, only a small amount of water is easily accessible to humans and animals. This study's motivation is to find a solution for lacking freshwater, converting brackish and seawater to potable water. The main goal was to produce potable water with high-efficiency production using solar energy. The system's main components were the absorber plate painted black, glass cover, insulation, and vessels to collect fresh water. The absorber plate is painted black to absorb solar radiation, preventing its reflection. The plate delivers higher temperatures for saline water to be evaporated and condensed afterward. The basin liner was made of an iron sheet, and the cover is made of ordinary glass, while the basin was covered with glass using silicon rubber. We used 30-degree single slope solar to identify the efficiency of using black stone without using black stone (control). The results showed that the maximum output with black stone and without it was respectively 750 ml and 600 ml; therefore, the use of black stone can increase the productivity for the single slope solar still.Keywords: Solar collector; Potable water; Brackish water.

Publisher

Universidade Estadual Paulista - Campus de Tupa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3