Performance of sensors for quality analysis of irrigation water

Author:

Passos Mádilo,Mariano Arthur Breno Rocha,Andreska da Silva Daniela,Oliveira de Sousa Alan Bernard

Abstract

Monitoring the quality of irrigation water can help in the maintenance of filters and irrigation systems, avoiding clogs and uniformity problems. The objective of this work was, thus, to evaluate the performance of sensor modules for monitoring irrigation water quality variables. For that, three sensors were evaluated, and their performance was rated from the adjustment of calibration equations, obtained through linear regression analysis (yi = b0 + b1xi + εi), using the ordinary least squares method (OLS) to estimate its parameters (β0 and β1). The first sensor evaluated was the Ph4502c for pH measurement. Direct methodology was used, using standard pH solutions (1.79; 4.5; 6.88; 12.13; and 13.99) and an electrode type BNC probe. The second evaluated sensor was turbidity model TSW30. To evaluate the total dissolved solids (TDS) sensor, the direct method was applied, using solutions with electrical conductivity of 0.50, 1.0, and 2.0 dS m-1. To investigate the assumptions of independence, homoscedasticity, and normality of the residuals of the linear regression models, the Durbin-Watson, Breusch-Pagan, and Kolmogorov-Smirnov tests were respectively used. In the evaluation of the statistical performance, the indicators of the root-mean-square error, coefficient of determination, correlation coefficient, confidence index, and index of agreement were adopted. The ordinary least squares method did not produce the best unbiased linear estimators for the calibration equations of the pH, turbidity, and TDS sensors, due to the violation of the regression assumptions. The adjustments showed good accuracy for water quality assessment, according to high performance statistics and models classified as ‘Excellent’.

Publisher

Universidade Estadual Paulista - Campus de Tupa

Reference19 articles.

1. Almeida, O. A. de. (2010). Qualidade da água de irrigação. Embrapa Mandioca e Fruticultura, Cruz das Almas. 234p.

2. Assis, F. N., Arruda, H. V. de, Pereira, A. R. (1996). Aplicações de estatística à climatologia: teoria e prática. Pelotas: UFPel, 1996. 161p.

3. Brasil. (2014). Ministério da Saúde. Fundação Nacional de Saúde. Manual de controle da qualidade da água para técnicos que trabalham em ETAs.

4. Camargo, A. P., Sentelhas P. C. (1997). Avaliação do desempenho de diferentes métodos de estimativas da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, Santa Maria, 5(1), 89-97.

5. Carvalho, F. P., Maia, V. M., Louzada, L. C., Gonçalves, M. A. (2017). Desempenho setorial de empresas brasileiras: um estudo sob a ótica do ROE, Q de Tobin e Market to Book. Revista de Gestão, Finanças e Contabilidade, 7(1), 149-163. http://dx.doi.org/10.18028/2238-5320/rgfc.v7n1p149-163

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3