Affiliation:
1. Professor, Department of Artificial Intelligence and Machine Learning, School of Engineering, Mallareddy University, Hyderabad, Telangana, India
Abstract
Most algorithms used to identify large itemsets can be classified as either sequential or parallel. In most cases, it is assumed that the itemsets are identified and stored in lexicographic order (based on item name). This ordering provides a logical manner in which itemsets can be generated and counted. This is the normal approach with sequential algorithms. On the other hand, parallel algorithms focus on how to parallelize the task of finding large itemsets. Mining Associations is one of the techniques involved in the process mentioned in chapter 1 and among the data mining problems it might be the most studied ones. Discovering association rules is at the heart of data mining. Mining for association rules between items in large database of sales transactions has been recognized as an important area of database research. These rules can be effectively used to uncover unknown relationships, producing results that can provide a basis for forecasting and decision making. Today, research work on association rules is motivated by an extensive range of application areas, such as banking, manufacturing, health care, and telecommunications. It is also used for building statistical thesaurus from the text databases, finding web access patterns from web log files, and also discovering associated images from huge sized image databases.
Reference12 articles.
1. Hassan M. Najadat, Mohammed Al-Maolegi, Bassam Arkok, “An Improved Apriori Algorithm for Association Rules”, International Research Journal of Computer Science and Application Vol. 1, No. 1, June 2013, PP: 01 – 08.
2. H.Toivonen, “Sampling large databases for association rules”. In Proc. 2006 Int. Conf. Very Large Data Bases(VLDB'06),pages 134-145, Bombay, India, Sep.2006.
3. Hu Ji-ming, Xian Xue-feng. “ The Research and Improvement of Apriori for association rules mining”,
4. Computer Technology and Development 2006 16(4) pp. 99-104.
5. Jiao Yabing, “Research of an Improved Apriori Algorithm in Data Mining Association Rules”, International