Ensemble Classifier for Stroke Prediction with Recurshive Feature Elimination

Author:

Mitra Pooja1,Degadwala Sheshang2,Vyas Dhairya3

Affiliation:

1. Research Scholar, Sarvajanik college of engineering and technology, Surat, Gujarat, India

2. Associate Professor & Head of Department, Dept. of Comp. Engineering, Sigma University, Gujarat, India

3. Research Scholar, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India

Abstract

This research proposes an ensemble classifier approach for stroke prediction utilizing Recursive Feature Elimination (RFE). By iteratively selecting and excluding features, RFE enhances the model's predictive capacity while minimizing overfitting. The ensemble classifier, formed by combining diverse base classifiers, capitalizes on their complementary strengths to enhance overall predictive performance. Leveraging a comprehensive dataset, the proposed approach demonstrates superior stroke prediction accuracy compared to individual classifiers, underscoring its potential as an effective tool for early stroke risk assessment.

Publisher

Technoscience Academy

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference15 articles.

1. S. K. Satapathy, A. Patel, P. Yadav, Y. Thacker, D. Vaniya, and D. Parmar, “Machine Learning Approach for Estimation and Novel Design of Stroke Disease Predictions using Numerical and Categorical Features,” in 2023 International Conference for Advancement in Technology (ICONAT), 2023, pp. 1–6. doi: 10.1109/ICONAT57137.2023.10080722.

2. K. S. R. S, B. Chandra, K. Kausalya, C. RM, and G. R. V, “Prognosis of Stroke using Machine Learning Algorithms,” in 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), 2023, pp. 1–6. doi: 10.1109/ICCMC56507.2023.10084158.

3. C. H. Patel, D. Undaviya, H. Dave, S. Degadwala, and D. Vyas, “EfficientNetB0 for Brain Stroke Classification on Computed Tomography Scan,” in 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2023, pp. 713–718. doi: 10.1109/ICAAIC56838.2023.10141195.

4. N. R. Kifli, H. Hidayat, Rahmawati, F. P. Sukoco, A. R. Yuniarti, and S. Rizal, “Brain Stroke Classification using One Dimensional Convolutional Neural Network,” in 2022 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 2022, pp. 1–6. doi: 10.1109/APWiMob56856.2022.10014207.

5. Z. B. Feliandra, S. Khadijah, M. F. Rachmadi, and D. Chahyati, “Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks,” in 2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2022, pp. 187–192. doi: 10.1109/ICACSIS56558.2022.9923501.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3