Storage Preservation Using Big Data Based Intelligent Compression Scheme

Author:

S Ramya.1,Krishnan. V Gokula2

Affiliation:

1. ME-Computer Science and Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil Nadu, India

2. Assistant Professor, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil Nadu, India

Abstract

Big data has reached a maturity that leads it into a productive phase. This means that most of the main issues with big data have been addressed to a degree that storage has become interesting for full commercial exploitation. However, concerns over data compression still prevent many users from migrating data to remote storage. Client-side data compression in particular ensures that multiple uploads of the same content only consume network bandwidth and storage space of a single upload. Compression is actively used by a number of backup providers as well as various services. Unfortunately, compressed data is pseudorandom and thus cannot be deduplicated: as a consequence, current schemes have to entirely sacrifice storage efficiency. In this system, present a scheme that permits a more fine-grained trade-off. And present a novel idea that differentiates data according to their popularity. Based on this idea, design a compression scheme that guarantees semantic storage preservation for unpopular data and provides scalable data storage and bandwidth benefits for popular data. We can implement variable data chunk similarity algorithm for analyze the chunks data and store the original data with compressed format. And also includes the encryption algorithm to secure the data. Finally, can use the backup recover system at the time of blocking and also analyze frequent login access system.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3