Movie Recommended System by Using Collaborative Filtering

Author:

Shireesha Bheema1,Madhavilatha Navuluri1,Anilkumar Chunduru1

Affiliation:

1. Assistant Professor, Department of Computer Science and Engineering, Dr. APJ Abdul Kalam IIIT Ongole, Andhra Pradesh, India

Abstract

Recommendation system helps people in decision making an item/person. Recommender systems are now pervasive and seek to make profit out of customers or successfully meet their needs. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new item’s rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. In this project, we attempt to under- stand the different kinds of recommendation systems and compare their performance on the Movie Lens dataset. Due to large size of data, recommendation system suffers from scalability problem. Hadoop is one of the solutions for this problem.

Publisher

Technoscience Academy

Subject

General Medicine

Reference10 articles.

1. A Survey of Collaborative Filtering Techniques;https://www.hindawi.com/journals/aai/2009/421425/.,2017, Vol. 13(7).

2. Google News Personalization: Scalable Online Collaborative Filtering; Das et al; https://www2007.org/papers/paper570.pdf

3. Intro to Recommender Systems: Collaborative Filtering;http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative -filtering/"

4. Zhan J, Hsieh CL, Wang IC, Hsu TS, Liau CJ, Wang DW. Privacy-preserving collaborative recommender systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

5. Gong S. A collaborative filtering recommendation algorithm based on user clustering and item clustering. Journal of Software. 2010; 5(7):745-52.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3