Prediction of Cancer Treatment Effectiveness and Patient Outcomes using Machine Learning Classification Approaches - A Review

Author:

Maneesh Ragavendra K 1,Dr. R. Chinnaiyan 2

Affiliation:

1. B. Tech CSE – AI ML, School of Computer Science and Engineering, Presidency University, Bangalore , Karnataka, India

2. Professor & Head- RC, School of Computer Science and Engineering, Presidency University, Bangalore , Karnataka, India

Abstract

This study systematically reviews the Machine Learning methods developed to help predict the patient outcome and treatment effectiveness in cancer treatment. This research paper has been drafted from several other similar papers and with the help of a few topics related websites providing information regarding the radiation toxicity, survival rate and tumor response. Which are the main classification criteria for the patients. The use of ANN, DT, SVM and BNs has proved to be very beneficial in the classification of any given dataset, the accuracy of the model will be high with the use of all these ML methods.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3