Energy Optimization Using Reptile Search in Wireless Sensor Networks

Author:

Selvin Rajesh Kumar 1,Dr. R. Isaac Sajan 2

Affiliation:

1. PG Scholar, Department of CSE, Ponjesly College of Engineering, Nagercoil, India

2. Professor, Department of CSE, Ponjesly College of Engineering, Nagercoil, India

Abstract

Energy saving in wireless sensor networks (WSNs) is a critical problem for diversity of applications. Data aggregation between sensor nodes is huge unless a suitable sensor data flow management is adopted. Clustering the sensor nodes is considered an effective solution to this problem. Each cluster should have a controller denoted as a cluster head (CH) and a number of nodes located within its supervision area. Clustering demonstrated an effective result in forming the network into a linked hierarchy. Thus, balancing the load distribution in WSNs to make efficient use of the available energy sources and reducing the traffic transmission can be achieved. In solving this problem we need to find the optimal distribution of sensors and CHs; thus, we can increase the network lifetime while minimizing the energy consumption. In this paper, a Reptile Search Algorithm (RSA) for preserving location privacy and congestion avoidance with less delay guaranteed is proposed. With this routing technique, the complete sensor field is divided into different subdivisions and each subdivision elects a target area by computing its transmission distance. The backbone of the dynamic routing protocol consists of a virtual ring called bell nodes and a radial line called tentacle nodes employs more nodes to construct the network. The amount of radial line and radius of the virtual ring in a network are conjointly determined to ease the communication path from the node to sink. The radial line paths are routed directionally and bell nodes are routed with angular directions probabilistically. From the routing path, the tentacle nodes collect the data to dynamic sink which will assure that the information is going to be collected with less delay and attacker cannot guess their positions. The experimental results show that the proposed RSA method accomplishes enhanced performance in terms of energy consumption, packet delivery delay and lifetime.

Publisher

Technoscience Academy

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3