Author:
Jalpaben Kandoriya ,Degadwala Dr. Sheshang Degadwala
Abstract
In this research into liver tumor categorization within MRI images, diverse machine learning methodologies were scrutinized for their efficacy. The study delved into the integration of shape and texture features, aiming to bolster classification accuracy. Among the algorithms explored, the Extra Trees model emerged as the most promising contender, exhibiting superior performance compared to its counterparts. Leveraging the distinctive capabilities of the Extra Trees model, the study underscored its effectiveness in accurately categorizing liver tumors. This highlights its potential to enhance diagnostic precision in clinical contexts. Through rigorous experimentation and analysis, the research elucidated the significance of incorporating shape and texture features into machine learning frameworks for improved tumor classification. The findings not only contribute to advancing the field of medical imaging but also underscore the importance of leveraging innovative methodologies to address healthcare challenges. Overall, the study sheds light on the promising prospects of employing advanced machine learning techniques in medical imaging for more accurate and efficient diagnosis of liver tumors.