Skin Disease Detection Using Deep Learning

Author:

V. Rakesh 1,D. Abhishek 1,O. Earni Sai 1,Y. S. H. S. Rohit 1,R. Venkata Ramana 1

Affiliation:

1. Computer Science and System Engineering, Lendi Institute of Engineering and Technology, Vizianagaram, India

Abstract

Skin diseases are a major public health problem worldwide, requiring effective and timely diagnosis for effective treatment. In this paper, we present a new approach to automatically detect skin diseases using deep learning technology. The model we propose uses a Convolutional Neural Network (CNN) to analyze dermatological images with high accuracy, providing reliable and fast diagnosis. The system was trained on a variety of datasets to provide reliable performance across a variety of skin conditions. Experimental results show that the proposed model outperforms existing methods, demonstrating its potential for integration into clinical settings. Implementation of this deep learning-based skin disease detection system has the potential to revolutionize dermatological diagnostics and provide a cost-effective and scalable solution to improve patient care.

Publisher

Technoscience Academy

Reference17 articles.

1. Almeida M.A.M., Santos I.A.X. Classification Models for Skin Tumor Detection Using Texture Analysisin Medical Images. J. Imaging. 2020;6:51.

2. S. Arifin et al.Dermatological Disease Diagnosis Using Color-Skin Images

3. Czodrowski, P.: Count on kappa. J. Comput. Aided Mol. Des. 28(11), 1049–1055 (2014)

4. Ivan Bratchenko, Lyudmela Bratchenko, Yulia Khristoforova. ScienceDirect, November 2021.

5. Pawel Budura, Anna Platkowska and Joanna Czajowska. IEEE. July 2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3