Author:
Shital Patel ,Pooja Pancholi ,Arpita Chaudhury
Abstract
Clustering, an unsupervised learning technique, to find inherent groupings in un-labelled data. It seems to be referring to a study or research paper that examines and uses a number of clustering algorithms, including the canopy method, k-Means clustering, hierarchical clustering, density-based clustering, and EM algorithm. WEKA, a clustering program, is used for the examination of these techniques. and the effectiveness of these algorithms is evaluated through experiments using social network Ads datasets. The goal of this research paper or study seems to be to assess how well these clustering algorithms perform in grouping data within social network Ads datasets. Such analyses can help identify the most suitable algorithm for a specific type of data or problem domain and may lead to insights into the underlying structure of the data.
Reference12 articles.
1. D Swasti Singhal,” A Study on WEKA Tool for Data Preprocessing, Classification and Clustering”, International Journal of Innovative Technology and Exploring Engineering (IJITEE) ,Vol. 2(6), May 2013.
2. Team, E. "What is machine learning? a definition." online].(https://www. expertsystem. com/machine-learning-definition/ (2019).
3. Fung, Glenn. "A comprehensive overview of basic clustering algorithms." (2001): 1-37.
4. Namratha, M., and T. R. Prajwala. "A comprehensive overview of clustering algorithms in pattern recognition." IOSR Journal of Computer Engineering 4.6 (2012): 23-30.
5. N Patel, Meghna, Shital Patel, and Sonal Patel. "Data Analysis in Shopping Mall data using K-Means Clustering." 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, 2022.