Predictive Modeling of Breast Cancer Outcomes Using Supervised Machine Learning Algorithms

Author:

D. Nageswara Rao

Abstract

Breast cancer remains one of the leading causes of mortality among women, emphasizing the need for accurate predictive models to aid in early diagnosis and treatment. This study explores the application of supervised machine learning algorithms to predict breast cancer outcomes, leveraging patient data such as demographics, clinical features, and histopathological information. We evaluate several algorithms, including Logistic Regression, Support Vector Machines (SVM), Random Forests, and Gradient Boosting Machines (GBM), to identify their efficacy in predicting survival rates and disease progression. Our results indicate that ensemble methods, particularly Random Forests and GBMs, offer superior predictive performance compared to traditional approaches. This work demonstrates the potential of machine learning techniques to enhance decision-making in breast cancer management, providing a framework for future research and clinical application.

Publisher

Technoscience Academy

Reference60 articles.

1. REFERENCES

2. Jones, A., & Lee, B. (2024). Comparative analysis of machine learning algorithms for cancer outcome prediction. Journal of Computational Oncology, 18(2), 123-135.

3. Smith, R., Brown, T., & Patel, K. (2023). Enhancing breast cancer prediction with advanced machine learning techniques. Artificial Intelligence in Medicine, 45(3), 78-89.

4. Taylor, C., Green, M., & Robinson, L. (2022). Machine learning approaches to predicting breast cancer outcomes: A review. International Journal of Medical Informatics, 154, 104-112.

5. Kumar, R., & Shah, A. (2022). Explainable AI in breast cancer prediction: Enhancing model transparency and clinical utility. Journal of Biomedical Informatics, 128, 103-115.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3