Utilizing Machine Learning Ensemble Techniques for Crime Hotspot Analysis and Prediction

Author:

Mohammed Saifulla ,G. Chandrakala

Abstract

By combining the predictions of trained classifiers, the ensemble learning approach generates new examples through cooperative decision-making. Evidence from early analysis has demonstrated the empirical and logical superiority of ensemble classifiers over single component classifiers. It is still difficult to identify the right configuration for a given dataset, even with the presentation of many ensemble approaches. Many theories based on prediction have been developed to address the topic of machine learning crime prediction in India. The dynamic character of crimes becomes difficult to ascertain. Crime prediction aims to lower crime rates and discourage criminal action. This study provides an authentic and efficient way for determining acceptable crime predictions: the assemble-stacking based crime prediction method (SBCPM), which applies learning-based strategies to produce domain-specific configurations compared to another machine learning model. The result implies that performer models are generally not particularly successful. The ensemble model occasionally outperforms the others with the best correlation coefficient, the lowest average, and the lowest absolute errors. The proposed method generated accurate categorization on the test data. Compared to previous research that just employed violence-based crime records as a baseline, the model's prediction effect is demonstrated to be stronger. The results further shown that criminological theories are congruent with any real-world crime data. The recommended strategy also proved useful in predicting possible crimes. and show that the ensemble model has higher prediction accuracy when compared to the individual classifier.

Publisher

Technoscience Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3