Optimizing Speaker Recognition in Complex Environments : An Enhanced Framework with Artificial Neural Networks for Multi-Speaker Settings

Author:

Anitha Mummireddygari ,N Ananda Reddy

Abstract

This study focuses on the development of an advanced speaker recognition system utilizing Convolutional Neural Networks (CNN) in conjunction with Mel Frequency Cepstral Coefficients (MFCC) for feature extraction and K Nearest Neighbor (KNN) for classification. The proposed system aims to improve accuracy by refining the fine-tuning layer within the CNN architecture. By leveraging the unique characteristics of human voice as a biometric identifier, the system extracts voice data features using MFCC, then employs CNN with triplet loss to generate 128-dimensional embeddings. These embeddings are subsequently classified using the KNN method. The system's performance was evaluated using 50 speakers from the TIMIT dataset and 60 speakers from live recordings made with a smartphone, demonstrating high accuracy. This study highlights the potential of combining CNN and MFCC for robust speaker recognition and suggests that future research could further enhance recognition accuracy by integrating multimodal biometric systems, which combine different types of biometric data for more comprehensive identification.

Publisher

Technoscience Academy

Reference25 articles.

1. R. Ryu, S. Yeom, S.-H. Kim, and D. Herbert, ‘‘Continuous multimodal biometric authentication schemes: A systematic review,’’ IEEEAccess, vol. 9, pp. 34541–34557, 2021, doi: 10.1109/ACCESS.2021.3061589.

2. M. M. Kabir, M. F. Mridha, J. Shin, I. Jahan, and A. Q. Ohi, ‘‘A survey of speaker recognition: Fundamental theories, recognition methodsand opportunities,’’ IEEE Access, vol. 9, pp. 79236–79263, 2021, doi:10.1109/ACCESS.2021.3084299.

3. Veridium Enterprise. (2019). How Your Biometric Data is Different FromYour Password—Veridium. [Online]. Available: https://veridiumid.com/case-studies/?_ga=2.182866598.1698325735.1656058419-1850179022.1656058419

4. C. Burt. (2019). More Than 4 in 5 Americans Support AirportBiometrics, Unisys Survey Shows—Biometric Update. [Online]. Available:https://www.biometricupdate.com/201906/more-than-4-in-5-americanssupport-airport-biometrics-unisys-survey-shows

5. X. Mu and C.-H. Min, ‘‘MFCC as features for speaker classification using machine learning,’’ in Proc. IEEE World AI IoTCongr. (AIIoT), Seattle, WA, USA, Jun. 2023, pp. 566–570, doi:10.1109/AIIoT58121.2023.10174566.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3