Stock Market Prediction Using Machine Learning Techniques

Author:

Mukku Lalasa,Burri Vikas

Abstract

The prediction of stock market prices holds significant importance within the contemporary economic landscape. Consequently, there has been a notable surge in scholarly interest directed towards exploring novel avenues for enhancing stock market prediction capabilities. Recent research endeavors have illuminated the potential predictive value inherent in various data streams, including historical stock data and user-generated content sourced from platforms such as Twitter and web news. These investigations have revealed a discernible relationship between social mood, as reflected in online discourse, and future stock price movements. However, prior studies have often overlooked the incorporation of such sentiment-derived information, thus presenting an information gap. In the present study, we address this gap by proposing an effective methodology for the integration and analysis of multiple information sources to facilitate more accurate stock price predictions. Leveraging Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) models, we conduct a comprehensive analysis of disparate data sources. Furthermore, we employ an ensemble approach, incorporating Weighted Average and Differential Evolution techniques, to refine the predictive accuracy of our models. Our findings demonstrate the efficacy of the proposed methodology in generating highly accurate stock price predictions across varying future time horizons, including one-day, seven-day, 15-day, and 30-day intervals. These predictions offer valuable insights for investors seeking to make informed decisions regarding their investment strategies and enable companies to gauge their anticipated performance within the stock market landscape.

Publisher

Technoscience Academy

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3