Developing the Framework Using Deep Neural Network for Detection of Spam and Fake Spam Messages in Twitter

Author:

N. Anil Kumar ,Thatha Anusha ,Nagamalla Durga Prasad ,Maddala Bala Manikanta ,Boddu Swathi

Abstract

Social media plays vital role among the user communities for social gathering, entertainment, communication, sharing knowledge so on. Twitter is one such network to connect millions of users to share information. Nowadays, there are humpteen numbers of users using social media for social engagements. Due to the fact that wide publicity of individuals and products get viral in social media, everyone wish to use social media as a platform to promote their product. Furthermore, large number of people relies on social media contents to take decisions. Twitter is one of the social media platforms to post the media contents by the user. Spammers are illegal users intrude the twitter account and send the duplicate messages to promote advertisement, phishing, scam and personal blogs etc. In this paper, a novel spam detection mechanism is introduced to detect the suspicious users on twitter. The system has been designed such a way that it initially set with semi-supervised at the tweet level and update into supervised level for learning the input tweets to detect the spammers. The proposed system will also identify the type of spammers and will also remove duplicate tweets. We have applied with multi-classifier algorithms like naïve Bayesian, K-Nearest neighbor and Random forest into twitter data set and the performance is compared. The experimental result shows very promising results.

Publisher

Technoscience Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3