Quantum Key Distribution (QKD) for Symmetric Key Transfer

Author:

Asoke Nath ,Shreya Maity ,Soham Banerjee ,Rohit Roy

Abstract

Classical cryptographic systems are increasingly challenged by advances in computing power and new algorithmic techniques, particularly with the rise of quantum computing, which threatens the security of current encryption methods. This has spurred interest in quantum-resistant cryptography, aimed at creating algorithms that can withstand attacks from quantum computers. Traditionally, secure key transport over alternate channels has been a significant challenge, but quantum mechanics offers a solution. Quantum Key Distribution (QKD) is a revolutionary method for secure communication that leverages quantum principles. Unlike traditional methods, QKD provides unconditional security, with key security ensured by the laws of physics rather than computational difficulty. The BB84 protocol, introduced in 1984 by Bennett and Brassard, is a leading QKD scheme known for its simplicity and effectiveness in generating eavesdropping-resistant cryptographic keys. It facilitates secure key transport over alternate channels. This documentation aims to advance QKD security by practically implementing and analyzing the BB84 protocol. Through detailed theoretical analysis, simulation studies, and experimental validation, the practical impacts, and limitations of BB84-based QKD systems are examined. Additionally, a practical implementation of quantum key distribution using a sudoku key demonstrates the process's simplicity and effectiveness. These findings are expected to pave new paths in the field of cryptanalysis in the emerging Quantum Age.

Publisher

Technoscience Academy

Reference20 articles.

1. C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, page 8. New York, 1984.

2. Michael A. Nielsen, Isaac L. Chuang, 2000, Quantum Computation and Quantum Information, Cambridge University Press( ISBN 978-1-107-00217-3)

3. https://www.quantum-inspire.com/kbase/what-is-a-qubit/ (last visited: 04.04.2024)

4. https://www.britannica.com/science/polarization-physics (last visited: 03.04.2024)

5. Lai J, Yao F, Wang J, Zhang M, Li F, Zhao W, Zhang H. Application and Development of QKD-Based Quantum Secure Communication. Entropy (Basel). 2023 Apr 6;25(4):627. doi:10.3390/e25040627. PMID: 37190415; PMCID: PMC10138083.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3