Author:
Asoke Nath ,Shreya Maity ,Soham Banerjee ,Rohit Roy
Abstract
Classical cryptographic systems are increasingly challenged by advances in computing power and new algorithmic techniques, particularly with the rise of quantum computing, which threatens the security of current encryption methods. This has spurred interest in quantum-resistant cryptography, aimed at creating algorithms that can withstand attacks from quantum computers. Traditionally, secure key transport over alternate channels has been a significant challenge, but quantum mechanics offers a solution. Quantum Key Distribution (QKD) is a revolutionary method for secure communication that leverages quantum principles. Unlike traditional methods, QKD provides unconditional security, with key security ensured by the laws of physics rather than computational difficulty. The BB84 protocol, introduced in 1984 by Bennett and Brassard, is a leading QKD scheme known for its simplicity and effectiveness in generating eavesdropping-resistant cryptographic keys. It facilitates secure key transport over alternate channels. This documentation aims to advance QKD security by practically implementing and analyzing the BB84 protocol. Through detailed theoretical analysis, simulation studies, and experimental validation, the practical impacts, and limitations of BB84-based QKD systems are examined. Additionally, a practical implementation of quantum key distribution using a sudoku key demonstrates the process's simplicity and effectiveness. These findings are expected to pave new paths in the field of cryptanalysis in the emerging Quantum Age.
Reference20 articles.
1. C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, page 8. New York, 1984.
2. Michael A. Nielsen, Isaac L. Chuang, 2000, Quantum Computation and Quantum Information, Cambridge University Press( ISBN 978-1-107-00217-3)
3. https://www.quantum-inspire.com/kbase/what-is-a-qubit/ (last visited: 04.04.2024)
4. https://www.britannica.com/science/polarization-physics (last visited: 03.04.2024)
5. Lai J, Yao F, Wang J, Zhang M, Li F, Zhao W, Zhang H. Application and Development of QKD-Based Quantum Secure Communication. Entropy (Basel). 2023 Apr 6;25(4):627. doi:10.3390/e25040627. PMID: 37190415; PMCID: PMC10138083.