1. P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kuttler, M. Lewis, W.-t. Yih, T. Rockt ¨ aschel ¨ et al., “Retrievalaugmented generation for knowledge-intensive nlp tasks,” Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020
2. S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. B. Van Den Driessche, J.-B. Lespiau, B. Damoc, A. Clark et al., “Improving language models by retrieving from trillions of tokens,” in International conference on machine learning. PMLR, 2022, pp. 2206–2240
3. Yunfan Gaoa , Yun Xiongb , Xinyu Gaob , Kangxiang Jiab , Jinliu Panb , Yuxi Bic , Yi Daia , Jiawei Suna , Meng Wangc , and Haofen Wang, “Retrieval-Augmented Generation for Large Language Models: A Survey”
4. I. ILIN, “Advanced rag techniques: an illustrated overview,” https://pub.towardsai.net/ advanced-rag-techniques-an-illustrated-overview-04d193d8fec6, 2023.
5. W. Yu, D. Iter, S. Wang, Y. Xu, M. Ju, S. Sanyal, C. Zhu, M. Zeng, and M. Jiang, “Generate rather than retrieve: Large language models are strong context generators,” arXiv preprint arXiv:2209.10063, 2022.