Study of Content Based Image Retrieval Using Data Mining Techniques

Author:

Dhinakaran S.1

Affiliation:

1. Associate Professor, Department of Computer Science, Rathinam College of Arts & Science, Coimbatore, Tamil Nadu, India

Abstract

<p>The field of image retrieval has been an active research area for several decades and has been paid more and more attention in recent years as a result of the dramatic and fast increase in the volume of digital images. Content-based image retrieval (CBIR) is a new but widely adopted method for finding images from vast and un annotated image databases. In recent years, a variety of techniques have been developed to improve the performance of CBIR. In reaction to the needs of users, who feel problems connected with traditional methods of image searching and indexing, researchers focus their interest on techniques for retrieving images on the basis of automatically-derived features, often denoted as Content-Based Image Retrieval (CBIR). CBIR systems index the media documents using salient features extracted from the actual media rather than by textual annotations. Query by content is nowadays a very active research field, with many systems being developed by industrial and academic teams. Results performed by these teams are really promising. The situation gets diametrically different when we move our attention from the usual CBIR task, i.e. the retrieval of images which are similar (as a whole) to the query image, to the task “find all images that contain the query image”. The proposed CBIR technique uses more than one clustering techniques to improve the performance of CBIR. This optimized method makes use of K-means and Hierarchical clustering technique to improve the execution time and performance of image retrieval systems in high dimensional sets. In this similarity measure is totally based on colors. In this paper more focus area is the way of combination of clustering technique in order to get faster output of images. In this paper the clustering techniques are discussed and analyzed. Also, we propose a method HDK that uses more than one clustering technique to improve the performance of CBIR. This method makes use of hierarchical and divides and conquers K-means clustering technique with equivalency and compatible relation concepts to improve the performance of the K-Means for using in high dimensional datasets. It also introduced the feature like color, texture and shape for accurate and effective retrieval system.</p>

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3