Development of Text Clustering Method with K-Means for Analysis of Text Data

Author:

Wadnare R. J.1,Sherekar Dr. S. S.1,Thakare Dr. V. M.1

Affiliation:

1. Sant Gadge Baba Amravati University, Amravati, Maharashtra, India

Abstract

Clustering is a widely used unsupervised data mining technique. In clustering, the main aim is to put similar data objects in one cluster and dissimilar in another cluster. The k-implies is the most famous clustering algorithm because of its effortlessness. But the performance of the k-means clustering algorithm depends upon the parameter selection. Parameter selection like number of cluster and initial cluster center are key of k-means algorithm. Distance augmentation method, density method quadratic clustering methods are utilized to initial cluster selection. This paper examination five unique methods, for example, improved k-means text clustering algorithm, revisiting k-means, LMMK algorithm, SELF-DATA architecture, Clustering Approach for Relation e.t.c. But these techniques have some limitations. To improve these approach, this paper has proposed the development of text clustering method with k-means for analysis of text data.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3