Load Balancing Using SJF-MMBF and SJF-ELM Approach

Author:

Rekha S.1,Kalaiselvi C.2

Affiliation:

1. Assistant Professor, Department of IT, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, India

2. Head and Associate Professor, Department of Computer Applications, Tirupur Kumaran College for Women, Tiruppur, Tamil Nadu, India

Abstract

This paper studies the delay-optimal virtual machine (VM) scheduling problem in cloud computing systems, which have a constant amount of infrastructure resources such as CPU, memory and storage in the resource pool. The cloud computing system provides VMs as services to users. Cloud users request various types of VMs randomly over time and the requested VM-hosting durations vary vastly. A multi-level queue scheduling algorithm partitions the ready queue into several separate queues. The processes are permanently assigned to one queue, generally based on some property of the process, such as memory size, process priority or process type. Each queue has its own scheduling algorithm. Similarly, a process that waits too long in a lower-priority queue may be moved to a higher-priority queue. Multi-level queue scheduling is performed via the use of the Particle Swarm Optimization algorithm (MQPSO). It checks both Shortest-Job-First (SJF) buffering and Min-Min Best Fit (MMBF) scheduling algorithms, i.e., SJF-MMBF, is proposed to determine the solutions. Another scheme that combines the SJF buffering and Extreme Learning Machine (ELM)-based scheduling algorithms, i.e., SJF- ELM, is further proposed to avoid the potential of job starva¬tion in SJF-MMBF. In addition, there must be scheduling among the queues, which is commonly implemented as fixed-priority preemptive scheduling. The simulation results also illustrate that SJF- ELM is optimal in a heavy-loaded and highly dynamic environment and it is efficient in provisioning the average job hosting rate.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3