Vegetable Plucking Machine Using Object Detection : A Case Study

Author:

Sakarkar Gopal1,Baitule Rashmi1

Affiliation:

1. Assistant Professor, Department of Artificial Intelligence, G. H. Raisoni College of Engineering, Nagpur, Maharashtra, India

Abstract

Automated or robot-assisted collection is an evolving research domain that mixes aspects of machine vision and machine intelligence. When combined with robotics, image processing has proven to be an efficient method for analysis in various performance areas, namely agricultural applications. Most of it had been applied to the robot, which may want to pick fruit and type various fruits and vegetables. Identification and classification could even be a serious obstacle to computer vision demanding near-human levels of recognition. The target of this survey is to classify and briefly review the literature on harvesting robots that use different techniques and computer analysis of images of fruits and vegetables in agricultural activities, which incorporates 25 articles published within the last three decades. The proposed approach takes under consideration various sorts of fruit. Much research on this subject has been conducted in recent years, either implementing simple techniques such as computer vision like color-based clustering or using other sensors like LWIR, hyperspectral, or 3D. Current advances in computer vision offer an honest sort of advanced object detection techniques that would dramatically increase the quality of efficiency of fruit detection from RGB images. Some performance evaluation metrics obtained in various experiments are emphasized for the revised techniques, thus helping researchers to settle on and make new computer vision applications in fruit images.

Publisher

Technoscience Academy

Subject

General Medicine

Reference21 articles.

1. G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

2. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

3. I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

4. Sahar Hassan, Dr. Muhammad Zubair Asghar, “WEB BASED ATTENDANCE MANAGEMENT SYSTEM” December 2015,pp. 10–11.

5. Keissling, Manuel. 2012. The Node Beginner Book. Lulu.com, United States.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harvesting Robots for Smart Agriculture;Algorithms for Intelligent Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3