Deep Learning model to Automate the process of mapping Cancer Cells to Cell Lines & Cancer Types from Single Cell RNA-Seq Data

Author:

Patel Vatsal1

Affiliation:

1. BS Mathematics, St. Xavier's College, Mumbai, India

Abstract

Single Cell RNA Sequencing has given us a broad domain to study heterogeneity & expression profiles of cells. Downstream analysis of such data has led us to important observation and classification of cell types. However, these approaches demand great exertion and effort added that it seems the only way to proceed ahead for the first time. Results of such verified analysis have led us to create labels from our dataset. We can use the same labeled data as an input to a neural network and this way we would be able to automate the tedious & time-consuming process of downstream analysis. In this paper, we have automated the process of mapping cancer cells to cancer cell lines & cancer types. For the same, we have used pan-cancer single cell sequencing data of 53513 cells from 198 cell lines reflecting 22 cancer types.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3