Text And Sentimental Analysis On Big Data

Author:

Ahmed Saifuzzafar Jaweed1

Affiliation:

1. Department of Computer Engineering, Dhole Patil College of Engineering (DPES), Pune, Maharashtra, India

Abstract

Big Data has become a very important part of all industries and organizations sectors nowadays. All sectors like energy, banking, retail, hardware, networking, etc all generate a huge amount of unstructured data which is processed and analyzed accurately in a structured form. Then the structured data can reveal very useful information for their business growth. Big Data helps in getting useful data from unstructured or heterogeneous data by analyzing them. Big data initially defined by the volume of a data set. Big data sets are generally huge, measuring tens of terabytes and sometimes crossing the sting of petabytes. Today, big data falls under three categories structured, unstructured, and semi-structured. The size of big data is improving in a fast phase from Terabytes to Exabytes Of data. Also, Big data requires techniques that help to integrate a huge amount of heterogeneous data and to process them. Data Analysis which is a big data process has its applications in various areas such as business processing, disease prevention, cybersecurity, and so on. Big data has three major issues such as data storage, data management, and information retrieval. Big data processing requires a particular setup of hardware and virtual machines to derive results. The processing is completed simultaneously to realize results as quickly as possible. These days big data processing techniques include Text mining and sentimental analysis. Text analytics is a very large field under which there are several techniques, models, methods for automatic and quantitative analysis of textual data. The purpose of this paper is to show how the text analysis and sentimental analysis process the unstructured data and how these techniques extract meaningful information and, thus make information available to the various data mining statistical and machine learning) algorithms.

Publisher

Technoscience Academy

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hashtag Activism Due to Restrictions and Measures During the COVID-19 Pandemic in Turkey;Advances in Multimedia and Interactive Technologies;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3