Handwritten Digit Recognition Using Deep Learning

Author:

M Bhagyashree P1,Likhitha L K1,Rajesh D S1

Affiliation:

1. Department of Computer Science, Srinivas Institute of Technology, Valachil, Mangaluru, Karnataka, India

Abstract

Traditional systems of handwritten Digit Recognition have depended on handcrafted functions and a massive amount of previous knowledge. Training an Optical character recognition (OCR) system primarily based totally on those stipulations is a hard task. Research in the handwriting recognition subject is centered on deep learning strategies and has accomplished breakthrough overall performance in the previous couple of years. Convolutional neural networks (CNNs) are very powerful in perceiving the structure of handwritten digits in ways that assist in automated extraction of features and make CNN the most appropriate technique for solving handwriting recognition problems. Here, our goal is to attain similar accuracy through the use of a pure CNN structure.CNN structure is proposed to be able to attain accuracy even higher than that of ensemble architectures, alongside decreased operational complexity and price. The proposed method gives 99.87 accuracy for real-world handwritten digit prediction with less than 0.1 % loss on training with 60000 digits while 10000 under validation.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3