Gesture Based Real-time Indian Sign Language Interpreter

Author:

Divkar Akshay1,Bailkar Rushikesh1,Pawar Dr. Chhaya S.1

Affiliation:

1. Department of Computer Engineering, Datta Meghe College of Engineering Navi Mumbai, India

Abstract

Hand gesture is one of the methods used in sign language for non-verbal communication. It is most commonly used by hearing & speech impaired people who have hearing or speech problems to communicate among themselves or with normal people. Developing sign language applications for hearing impaired people can be very important, as hearing & speech impaired people will be able to communicate easily with even those who don’t understand sign language. This project aims at taking the basic step in bridging the communication gap between normal people, deaf and dumb people using sign language. The main focus of this work is to create a vision based system to identify sign language gestures from the video sequences. The reason for choosing a system based on vision relates to the fact that it provides a simpler and more intuitive way of communication between a human and a computer. Video sequences contain both temporal as well as spatial features. In this project, two different models are used to train the temporal as well as spatial features. To train the model on the spatial features of the video sequences a deep Convolutional Neural Network. Convolutional Neural Network was trained on the frames obtained from the video sequences of train data. To train the model on the temporal features Recurrent Neural Network is used. The Trained Convolutional Neural Network model was used to make predictions for individual frames to obtain a sequence of predictions. Now this sequence of prediction outputs was given to the Recurrent Neural Network to train on the temporal features. Collectively both the trained models i.e. Convolutional Neural Network and Recurrent Neural Network will produce the text output of the respective gesture.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3