Efficient Working of Signature Based Intrusion Detection Technique in Computer Networks
Author:
Affiliation:
1. Assistant Professor, School of Computer Application, Career Point University, Kota, Rajasthan, India
2. Vardhman Mahaveer Open University, Kota, Rajasthan, India
Abstract
Publisher
Technoscience Academy
Subject
General Medicine
Reference10 articles.
1. D. E. Denning. “An Intrusion-Detection Model”. IEEE transactions on software engineering, Volume : 13 Issue: 2, February 1987.
2. J.P. Anderson, “Computer security technology planning study”. Technical Report, ESDTR-73-51, United States Air Force, Electronic Systems Division, October 1972..
3. Axelsson, S (2000). "Intrusion Detection Systems: A Survey and Taxonomy" (retrieved 21 May 2018)
4. Brandon Lokesak (December 4, 2008). "A Comparison Between Signature Based and Anomaly Based Intrusion Detection Systems"(PPT). www.iup.edu.
5. DP Gaikwad, P Pabshettiwar, P Musale, P Paranjape, AS. Pawar, "A proposal for implementation of signature based intrusion detection system using multithreading technique", International Journal of Computational Engineering Research (ijceronline.com)., vol. 2, no. 7, 2012
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Hybrid Deep Learning Model-Based Intrusion Detection System for Emergency Planning Using IoT-Network;2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM);2023-09-13
2. From Nature to Networks: Harnessing Funnel Dynamics for Effective Intrusion Detection in IoT Environments;2023-06-26
3. DuRBIN: A Comprehensive Approach to Analysis and Detection of Emerging Threats due to Network Intrusion;2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2022-09-12
4. Intrusion Detection Systems in Internet of Things and Mobile Ad-Hoc Networks;Computer Systems Science and Engineering;2022
5. Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems;Future Internet;2020-09-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3