Performance Analysis of Sense Embeddings in Multilingual WSD Framework

Author:

Mr. Prashant Y. Itankar 1,Dr. Nikhat Raza 1

Affiliation:

1. Department of Computer Science and Engineering, MPU, Bhopal, Madhya Pradesh. India

Abstract

Execution of Word Sense Disambiguation (WSD) is one of the difficult undertakings in the space of Natural language processing (NLP). Age of sense clarified corpus for multilingual WSD is far off for most languages regardless of whether assets are accessible. In this paper we propose a solo technique utilizing word and sense embeddings for working on the presentation of WSD frameworks utilizing untagged corpora and make two bags to be specific context bag and wiki sense bag to create the faculties with most noteworthy closeness. Wiki sense bag gives outer information to the framework needed to help the disambiguation exactness. We investigate Word2Vec model to produce the sense back and notice huge execution acquire for our dataset.

Publisher

Technoscience Academy

Subject

General Medicine

Reference14 articles.

1. Bhingardive, S., Singh, D., Murthy, R., Redkar H., Bhattacharya, P., “Unsupervised Most frequent sense detection using word embeddings”, Proceedings of the 2015 Conference of the North American Chapter of the Association of Computational Linguistics:Human Language technologies, Denver, Colorado., 2015.

2. Bhingardive S., Shaikh S., Bhattacharyya P.; "Neighbours Help: Bilingual Unsupervised WSD Using Context." ACL, 2013.

3. Mikolov T., Kai C., Greg C., Jeffery, D.;“Efficient Estimation of Word representations in vector space”, In Proceedings of workshop at ICLR. 2013.

4. Fu R. Guo J., Qin B., Che W., Wang H., Liu T.; "Learning semantic hierarchies: A continuous vector space approach." IEEE Transactions on Audio, Speech, and Language Processing 23.3, 2015 pp. 461-471.

5. Schutze H.; “Word space”, Advances in neural information processing systems, 1993, pp. 895-902.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3