Twitter Sentiment Analysis using Machine Learning

Author:

G. Manikandan 1,M. Robinson Joel 1,S. Lidiya Jones Raj 1,D. Madlin Jency 1

Affiliation:

1. Department of Information Technology, Kings Engineering College, Chennai, India

Abstract

Social media makes it easier for people to communicate with one another online. Social media encompasses a wide range of applications and platforms, including Facebook for entertainment, Instagram for youth, Twitter for social and political, and YouTube, that let users share information, communicate online, and create communities. More than 4.7 billion individuals, or nearly 60% of the world's population, utilise social media. Twitter is a popular social media platform where users may express their feelings and opinions. In order to determine user sentiments, this Twitter sentiment analysis study uses sentiment analysis to data from tweets on the social media site. A whole new set of problems, such as the usage of slang and acronyms, are brought about by the relatively small size of the tweet format. Our objective is to carry out research on Twitter sentiment analysis while outlining the methodology, models, and generalised Python-based approach that was employed.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3