A Novel Approach for Detection of Malicious Websites using Machine Learning Techniques

Author:

Dr. Md. Sirajuddin 1,B. Bhavani 2,Y. Akshaya 2,P. Reethika 2,T. Sriram Reddy 2

Affiliation:

1. Professor, Head of the Department,Information Technology, Kallam Haranadha Reddy Institute of Technology, Chowdavaram, Guntur (Dt), Andhra Pradesh, India

2. B. Tech, Department of Information Technology, Kallam Haranadha Reddy Institute of Technology, Chowdavaram, Guntur(Dt), Andhra Pradesh, India

Abstract

When an unsuspecting victim visits a malicious website, it infects her machine to steal valuable information, redirects her to malicious targets, or compromises her system to launch future attacks. While current approaches have. There are still open issues in effectively and efficiently addressing: filtering of web pages from the wild, coverage of a wide range of malicious characteristics to capture the big picture, continuous evolution of web page features, systematic combination of features, semantic implications of feature values on characterizing web pages, ease and cost of flexibility and scalability of analysis and detection technology. In this position paper, we highlight our ongoing efforts towards effective and efficient analysis and detection of malicious websites, with a particular emphasis on broader feature space and attack-payloads, technique flexibility with changes in malicious characteristics and web pages, and, most importantly, technique usability in defending users against malicious websites.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3