Image Edge-Segmentation Techniques : A Review

Author:

Al-Taie Rana Riad K.1,Saleh Basma Jumaa1,Salman Lamees Abdalhasan1

Affiliation:

1. Department of Computer Engineering/ Al-Mustansiriyah University/ Baghdad, Iraq

Abstract

Image segmentation is commonly applied technique in different domains such as automatic pattern recognition, image retrieval based content, machine vision, face detection, medical imaging, and object detection. Image segmentation involves classifying or identifying sub patterns in a given image. Many of algorithms and techniques for image segmentation have been proposed to optimize segmentation problems in a specific application area. In this work, different image segmentation techniques had been applied (threshold based, region based segmentation and edge based preserving methods. This Experiment have been done using MATLAB R2018b. Different edge detection methods such as Sobel, Prewitt, Roberts, Laplacian, Kiresh and Canny methods are performed on the benchmark image and the performance is analyzed with respect to the standard measure peak signal-to-noise ratio (PSNR), and mean square error. The results present that the Laplacian method is more effective than the other methods.

Publisher

Technoscience Academy

Subject

General Medicine

Reference14 articles.

1. Venmathi, A. R., Ganesh, E. N., & Kumaratharan, N. (2016). Kirsch compass Kernel edge detection algorithm for micro calcification clusters in mammograms. Middle-East Journal of Scientific Research, 24(4), 1530-1535. .https://doi.org 10.5829/idosi.mejsr.2016.24.04.23384.

2. Saleh, B. J., Saedi, A. Y. F., al-Aqbi, A. T. Q., & abdalhasan Salman, L. (2021). Optimum Median Filter Based on Crow Optimization Algorithm. Baghdad Science Journal, 18(3), 0614-0614. https://doi.org/10.21123/bsj.2021.18.3.0614

3. Da Rugna, J., Chareyron, G., & Konik, H. (2011, October). About segmentation step in content-based image retrieval systems. In World Congress on Engineering and Computer Science (pp. 550-554). https://doi.org/10.1007/978-3-319-69137-4_17

4. Dhankhar, P., & Sahu, N. (2013). A review and research of edge detection techniques for image segmentation. International Journal of Computer Science and Mobile Computing, 2(7), 86-92.

5. Maini, R., & Aggarwal, H. (2009). Study and comparison of various image edge detection techniques. International journal of image processing (IJIP), 3(1), 1-11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3