Affiliation:
1. Maharana Pratap Govt. P.G. College, Chittorgarh, Rajasthan, India
Abstract
<p>The deprotonation constant (pK<sub>1</sub>) of glycine in 10, 20 and 30% dioxane in dioxane-water system at 308.15K was determined by potentiometric method using calomel electrode with the help of modified Davies equation, the dissociation of glycine is given as:</p>
<p>ZH<sup>+</sup> Z<sup>±</sup> + H<sup>+</sup></p>
<p>m<sub>2</sub>(1-?) m<sub>2</sub>? m<sub>2</sub>?</p>
<p>where ZH<sup>+ </sup>= NH<sub>3</sub><sup>+</sup>-CH<sub>2</sub>-COOH</p>
<p>Z<sup>±</sup> = NH<sub>3</sub><sup>+</sup>-CH<sub>2</sub>-COO<sup>-</sup> (Zwitter ion)</p>
<p>and Z = NH<sub>2</sub>-CH<sub>2</sub>-COOH = glycine</p>
<p>k<sub>1</sub> = acidic dissociation constant</p>
<p>k<sub>1</sub> is given by:</p>
<p>log k<sub>1</sub> = log k<sub>1</sub>(A) - (2A¢√μ/(1+ √μ)) + ?<sub>1</sub>μ</p>
<p>where k<sub>1</sub> real dissociation constant </p>
<p>k<sub>1</sub>(A) = Apparent Dissociation Constant </p>
<p>Rearrangingthe above equationwe have:</p>
<p>log K<sub>1 </sub>- ?<sub>1</sub>μ = logK<sub>1</sub>(A) - (2A<sup>1</sup>√μ) / (1 + √μ)</p>
<p>= q where q = log K<sub>1</sub>(A) - (2A<sup>1</sup>√μ) / (1 + √μ) </p>
<p>or q = log K<sub>1</sub>- ?<sub>1</sub>μ</p>
<p>-q = pK<sub>1</sub> + ?<sub>1</sub>μ</p>
<p>The constant value of m<sub>H</sub><sup>+</sup> was calculated by:</p>
<p>log m<sub>H</sub><sup>+ </sup>= (E<sup>0 </sup>- E)/K - log m<sub>Cl</sub><sup>_</sup> + (2A¢√μ/(1+ √μ)) - ?<sub>1</sub>μ</p>
<p>The value of deprotonation constant was calculated by extrapolating graph at μ = 0 where is μ is ionic strength.The related thermodynamic quantities ΔG<sup>0</sup>, ΔH<sup>0</sup> and ΔS<sup>0</sup> and free energy transfer ΔG<sub>t</sub> were calculated by the following least square method.The deprotonation constant was calculated by least square method:</p>
<p>log K<sub>1 </sub>= -A<sup>*</sup>/ T + D<sup>*</sup>-C<sup>*</sup>T </p>
<p>The related thermodynamic quantities ΔG<sup>0</sup>, ΔH<sup>0</sup> and ΔS<sup>0</sup> and free energy transfer ΔG<sub>t</sub> was calculated by the following least square method:</p>
<p>ΔG<sup>0</sup> = -19.1438(-A<sup>*</sup> + D<sup>*</sup>T - C<sup>*</sup>T<sup>2</sup>)</p>
<p>ΔH<sup>0</sup> = -19.1438(-A<sup>*</sup>- C<sup>*</sup>T<sup>2</sup>)</p>
<p>ΔS<sup>0</sup> = -19.1438(D<sup>*</sup> - 2C<sup>*</sup>T)</p>
Reference26 articles.
1. Harnerd and Fallon, J. Am. Chem. Soc., 1939, 61, 2374.
2. Harned and Dobell, J. Am. Chem. Soc., 1941, 63, 3308.
3. Harned and Done, J. Am. Chem. Soc., 1941, 63, 2579.
4. Harkecl and Owen, J. Am. Chem. Soc., 1930, 57, 5091.
5. Harkecl and Ewen, Chem. Rev., 1939, 25, 31.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献