Early Detection of Type-2 Diabetes Using Federated Learning
Author:
Affiliation:
1. Department of Computer Science and Engineering, Government College of Technology, Coimbatore, Tamil Nadu, India
Abstract
Publisher
Technoscience Academy
Subject
General Medicine
Reference23 articles.
1. Sajratul Yakin Rubaiat, Md Monibor Rahman, Md.Kamrul Hasan, 2018, “Important Feature Selection & Accuracy Comparisons of Different Machine Learning Models for Early Diabetes Detection”, International Conference on Innovation in Engineering and Technology (ICIET).
2. H. Wu, S. Yang, Z. Huang, J. He, and X. Wang, 2018, “Type 2 diabetes model based on data mining”, Informatics in Medicine Unlocked, vol. 10, pp. 100–107.
3. Aliza Ahmad, Aida Mustapha, Eliza Dianna Zahadi, Norhayati Masah, Nur Yasmin Yahaya, 2011, ” Comparison between Neural Networks against Decision Tree in Improving Prediction Accuracy for Diabetes Mellitus”, Digital Information Processing and Communications, Springer.
4. Dilip Kumar Choubey, Sanchita Paul & Santosh Kumar, Shankar Kumar, 2017 , “Classification of Pima indian diabetes dataset using naive bayes with genetic algorithm as an attribute selection”, Communication and Computing Systems – Prasad et al. (Eds) Taylor & Francis Group, London, ISBN 978-1-138-02952-1.
5. Kamer Kayaer, Tulay Yildirim, 2003, “Medical diagnosis on pima indian diabetes using general regression neural networks”, Proceedings of the International Conference on Artificial Neural Networks and Neural Information Processing (ICANN/ICONIP), pp. 181–184.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrating federated learning for improved counterfactual explanations in clinical decision support systems for sepsis therapy;Artificial Intelligence in Medicine;2024-11
2. Leveraging local data sampling strategies to improve federated learning;International Journal of Data Science and Analytics;2024-08-29
3. Edge AI Empowered Personalized Privacy-Preserving Glucose Prediction with Federated Deep Learning;2023 IEEE International Conference on E-health Networking, Application & Services (Healthcom);2023-12-15
4. Federated Learning to Improve Counterfactual Explanations for Sepsis Treatment Prediction;Artificial Intelligence in Medicine;2023
5. Towards predicting client benefit and contribution in federated learning from data imbalance;Proceedings of the 3rd International Workshop on Distributed Machine Learning;2022-12-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3