A Proposed Method to Identify the Occurrence of Diabetes in Human Body Using Data Analysis

Author:

Tanvir Rahman 1

Affiliation:

1. Department of Computer Science and Engineering (CSE) , Stamford University Bangladesh, Dhaka, Bangladesh

Abstract

Advanced machine-learning techniques are often used for reasoning-based diagnosis and advanced prediction system within the healthcare industry. The methods and algorithms are based on the historical clinical data and fact-based medicare evaluation. Diabetes is a global problem. Each year people are developing diabetes and due to diabetes, a lot of people are going for organ amputation. According to the World Health Organization (WHO), there is a sharp rise in number of people developing diabetes. In 1980, it was estimated that 180 million people with diabetes worldwide. This number has risen from 108 million to 422 million in 2014. WHO also reported that 1.6 million deaths in 2016 due to diabetes. Diabetes occurs due to insufficient production of insulin from pancreas. Several research show that unhealthy diet, smoking, less exercise, Body Mass Index (BMI) are the primary cause of diabetes. This paper shows the use of machine learning that can identify a patient of being diabetic or non-diabetic based on previous clinical data. In this article, a method is shown to analyze and compare the relationship between different clinical parameters such as age, BMI, Diet-chart, systolic Blood Pressure etc. After evaluating all the factors this research work successfully combined all the related factors in a single mathematical equation which is very effective to analyze the risk percentage and risk evaluation based on given input parameters by the participants or users.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3