Predictive Model on Churn Customers using SMOTE and XG-Boost Additive Model and Machine Learning Techniques in Telecommunication Industries

Author:

Lal Bechoo1,Kumar Suraj2

Affiliation:

1. Department of Information Technology, Western College, University of Mumbai, Maharashtra, India

2. College of Business, Westcliff University, United States of America (USA)

Abstract

In this research paper the researcher builds a predictive model on churn customers using SMOTE and XG-Boost additive model and machine learning techniques in Telecommunication Industries. Customer’s churning is one of the global research issues in telecommunication industries. In somehow customers are not satisfying from telecommunication customer services, call rate, international plan, data pack, and others which are having a significant impact on customer’s services. The researcher used the SMOTE and XGboost technique to handle the imbalanced dataset and gives the higher-level accuracy for predictive model to identify the category of customer whether they are in churn or not churn. The researcher used the comparative study between logistics regression and random forest algorithms to classify the category of churn customers and non-churn customers in Telecommunication Industries. The predictive model is verifying at 96% accuracy level and can be capable to handle imbalance dataset. As per the data analysis the score of the confusion matrix is such as accuracy 94%, Precision for “ did not leave “ is 0.97 whereas recall is 0.96, and F1score is 0.97 with the support features of 903. For the churn customers precision is 0.80, recall is 0.81, F1-score is 0.80 and support features is 160, the data analysis report shows that the predictive model is having 94% accuracy whereas at 6% does not predict accurately about the customers status. Finally, the researcher concluded that the predictive model is more accurate and can be capable to handle imbalance dataset. The researchers assure that the predictive model would be benefited for the telecommunication industries to categories the churn/ non-churn customers and accordingly the organization can make changes their business plan and policies which would be benefited for the customers.

Publisher

Technoscience Academy

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Credit Scoring Prediction Using Boruta Feature Selection with Different Sampling Techniques;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

2. Deep Dive into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3