Customer Segmentation using RFM Model and K-Means Clustering

Author:

Shirole Rahul1,Salokhe Laxmiputra1,Jadhav Saraswati1

Affiliation:

1. Department of Computer Engineering, Vishwakarma Institute of Technology Pune, Maharashtra, India

Abstract

Today as the competition among marketing companies, retail stores, banks to attract newer customers and maintain the old ones is in its peak, every company is trying to have the customer segmentation approach in order to have upper hand in competition. So Our project is based on such customer clustering method where we have collected, analyzed, processed and visualized the customer’s data and build a data science model which will help in forming clusters or segments of customers using the k-means clustering algorithm and RFM model (Recency Frequency Monetary) for already existing customers. The input dataset we used is UK’s E-commerce dataset from UCI repository for Machine Learning which is based on customer’s purchasing behavioral. At the very simple the customer clusters would be like super customer, intermediate customers, customers on the verge of churning out based on RFM score .Along with this we also have created a web model where an e-commerce startup or e-commerce business analyst can analyze their own customers based on model we created .So using this it will be easy to target customers accordingly and achieve business strength by maintaining good relationship with the customers .

Publisher

Technoscience Academy

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consumer Insights in E-commerce: Analyzing Sales Data Using Clustering Algorithm;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

2. Comparative Study of Unsupervised Learning Algorithms for Customer Segmentation;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

3. Customer-Based Market Segmentation Using Clustering in Data mining;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

4. LRFS: Online Shoppers’ Behavior-Based Efficient Customer Segmentation Model;IEEE Access;2024

5. Implementation of customer segmentation using machine learning;AIP Conference Proceedings;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3