Design of a Novel Network Framework for Traffic Identification by Using Deep Packet Inspection and Machine Learning

Author:

Nikita Manne 1,G Vinoda Reddy 2,M. Sreenu Naik 3,Kondabathula Durga Charan 4

Affiliation:

1. Assistant Professor, CSIT Department, CVR college of Engineering, Hyderabad, India

2. Professor, CSE (AI & ML) Department, CMR Technical Campus, Hyderabad, India

3. Assistant Professor, CSE (AI & ML) Department, CMR Technical Campus, Hyderabad, India

4. Assistant Professor, CSE (AI&DS) Department, Madanapalle Institute of Technology & Science, Andhra Pradesh, India

Abstract

This paper presents an investigation, involving experiments, which shows that current network intrusion, detection, and prevention systems (NIDPSs) have several shortcomings in detecting or preventing rising unwanted traffic and have several threats in high-speed environments. Precise organization traffic recognizable proof is a significant reason for network traffic checking and information investigation, and is the way to work on the nature of client administration. In this paper, through the examination of two organization traffic ID strategies in light of machine learning and profound parcel review, an organization traffic distinguishing proof strategy in view of machine learning and profound bundle examination is proposed. This strategy utilizes profound parcel assessment innovation to distinguish most organization traffic, diminishes the responsibility that should be recognized by machine learning. This paper presents an investigation, involving experiments, which shows that current network intrusion, detection, and prevention systems (NIDPSs) have several shortcomings in detecting or preventing rising unwanted traffic and have several threats in high-speed environments. It shows that the NIDPS performance can be weak in the face of high-speed and high-load malicious traffic in terms of packet drops, outstanding packets without analysis, and failing to detect/prevent unwanted traffic. A novel quality of service (QoS) architecture has been designed to increase the intrusion detection and prevention performance. Our exploration has proposed and assessed an answer involving an original QoS setup in a multi-facet change to sort out parcels/traffic and equal procedures to build the bundle handling speed. The new engineering was tried under various traffic velocities, types, and errands. The trial results show that the design works on the organization and security execution which is can conceal to 8 Gb/s with 0 bundles dropped. This paper likewise shows that this number (8Gb/s) can be improved, yet it relies upon the framework limit which is constantly restricted.

Publisher

Technoscience Academy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3